Safety Data Sheet

First issue date: February 24, 2023 Revision date: April 10, 2024

Enphase IQ Battery

Safety Data Sheet

Issue date: April 10, 2024

Section 1. Product name and identification

1.1 Product identifier

1.1.1 Product details

Product name	Product number	Country	
	IQBATTERY-5P-1P-ROW	Australia, New Zealand, India, South Africa	
Enphase IQ Battery 5P	IQBATTERY-5P-1P-INT	Europe, South Africa	
	IQBATTERY-5P-1P-NA	North America	
Enphase IQ Battery 10Z ¹	IQBATTERY-10Z-1P-ROWIQBATTERY-10Z-1P-INT	South Africa	

1.1.2 Other means of identification

- Lithium iron phosphate battery
- UN3480 Lithium-ion batteries, Class 9, for transport

1.1.3 Product description

The Enphase IQ Battery 5P consists of a lithium iron phosphate battery, a battery management unit (BMU), six IQ8D-BAT Microinverters, a protective case, and miscellaneous electronics.

1.2 Product use

1, 2, 1 Identified uses

The product will be used as an alternating current (AC)-coupled energy system, primarily with photovoltaic systems.

1.2.2 Use restrictions

Transport and store the battery under the following conditions:

- Temperature range: Do not expose the battery to temperatures outside -20°C to 50°C. To minimize adverse effects on battery performance, it should be kept at room temperature (25°C ±5°C).
- Do not store them near heat sources like furnaces or open flames.
- Store it in a dry location.
- Protect the battery from physical damage. Do not open, disassemble, crush, or burn the battery.
- Do not expose the battery to an elevation of more than:
 - 2000 meters for IQBATTERY-5P-1P-ROW and IQBATTERY-10Z-1P-ROW
 - 2500 meters for IQBATTERY-5P-1P-INT and IQBATTERY-5P-1P-NA

¹ Each Enphase IQ Battery 10Z includes two IQ Battery 5P units.

1.3 Details of the Supplier of the Safety Data Sheet

Enphase Energy, Inc.

47281 Bayside Pkwy., Fremont, CA 94538, Tel: +1 (833) 963-3820

1.4 Emergency contact details

1. 4.1 Emergency telephone number

- United States territories and Canada (ChemTel): (800) 255-3924
- Outside United States territories and Canada (ChemTel): +01 (813) 248-0585
- Australia: +1800 006374
- Contact Enphase Support

1. 4. 2 Regional office contact details

North America			
Fremont, California	Enphase Energy, Inc.		
	47281 Bayside Pkwy., Fremont, CA 94538		
	Tel: +1 (833) 963-3820		
Petaluma, California	Enphase Energy, Inc.		
Austin, Texas	1420 N. McDowell Blvd. Petaluma, CA 94954 Enphase Energy, Inc.		
	1835 Kramer Ln. Building B Suite 125		
	Austin, TX 78758		
Meridian, Idaho	Enphase Energy, Inc. 1819 S. Cobalt Point Way Meridian, ID 83642		
	,		
	Europe		
's -Hertogenbosch, The Netherlands	Enphase Energy NL B.V. Het Zuiderkruis 65		
The Netherlands	5215 MV, 's -Hertogenbosch,		
	The Netherlands		
	T 7477 7075050		
1 5	Tel: +31 73 3035859		
Lyon, France	Enphase Energy SAS Hub 2, 2ème étage 905 rue d'Espagne		
	BP 128 69125 Aéroport Lyon Saint Exupéry		
	France		
	Tel: +33 (0)4 74 98 29 56		
Freiburg, Germany	Enphase Energy Germany GmbH		
	Fahnenbergplatz 1,		
	79098 Freiburg, Germany		
	Tel: +49 (0) 761 887 89033		

APAC				
Shanghai, China	Enphase Energy			
	Room 32D, No.18 North Caoxi Road Xuhui District,			
	Shanghai, China 200030			
	Tel: +86 21-64686815			
Melbourne, Australia	Enphase Energy Australia Pty. Ltd.			
	88 Market Street,			
	South Melbourne VIC 3205			
	Australia			
	Tel: +61 (0)3 8669 1679			
Christchurch, New Zealand	1 Treffers Road			
	Wigram, Christchurch, Enphase Energy NZ Ltd.			
	New Zealand			
	Tel: +64 (0)9 887 0421			
Bangalore, India	Enphase Solar Energy Pvt. Ltd.			
	IndiQube Golf View Homes, Ward No.73 Airport,			
	NAL Wind Tunnel Main Road, Murugeshpalaya,			
	Bangalore-560 017, India			
	Tel: +91-80-6117-2500			

Section 2. Hazard identification

2.1 Hazard classification and hazard statement

The battery comprises a sealed, rigid, and protective solid case and is not expected to expose the user to hazardous ingredients under normal use conditions. The risk of exposure occurs only if the IQ Battery 5P is mechanically, thermally, or electrically abused to the point where both the protective case and battery are compromised. If this occurs, exposure to electrolyte solutions within the cell may occur through eye contact, skin contact, and ingestion.

The following hazard classifications only apply to the electrolyte:

- H226—Flammable liquid (Category 3)
- H302—Oral toxicity (Category 4)
- H314—Skin corrosion/irritation (Category 1)
- H318—Eye irritation (Category 1)
- H335—Specific organ toxicity; single exposure; respiratory tract irritation (Category
 3)
- H372—Specific organ toxicity; repeated exposure (bones, teeth) (Category 1)

2.2 GHS label elements

2.2.1 Pictogram (electrolyte)

2.2.2 Signal word: DANGER

2.3 GHS hazard statement (electrolyte)

Hazard class	Hazard category	Hazard code	Hazard statement
Flammable liquid	3	H226	Flammable liquid and vapor
Oral toxicity	4	H302	Harmful if swallowed
Skin corrosion	1	H314	Causes severe skin burns and eye damage
Eye irritation	1	H318	Causes serious eye damage
Specific organ toxicity → single exposure → respiratory tract irritation	3	H335	It may cause respiratory irritation

Safety Data Sheet

First issue date: February 24, 2023 Revision date: April 10, 2024

Specific target organ			
toxicity → repeated	1	H372	Causes damage to organs (bones, teeth)
exposure \rightarrow inhalation			

2.4 Precautionary statement

- P101—If medical advice is needed: Have the product container or label in hand.
- P102—Keep out of reach of children.
- P103—Read the label before use.
- P210-Keep away from heat, hot surfaces, sparks, open flames, and other ignition sources. Do not smoke.
- P264—Wash hands thoroughly after use.
- P280—Wear protective gloves/eye and face protection.
- P302 + P303 + P352 + P353 + P361 + P362 + P364—If on the skin (or hair): Take off all contaminated clothing immediately and wash before reuse. Rinse the skin with water.
- P337 + P332 + P313—If skin irritation occurs or eye irritation persists, get medical attention or advice.
- P370 + P378—In case of fire: Use ABC dry chemical to extinguish.

2.5 Hazards that GHS does not cover.

• No data is available; none is known.

Section 3. Composition/information on ingredients

3.1 Substances

As the battery is a solid manufactured article, exposing its hazardous ingredients is not expected with regular use.

Chemical name	CAS#	EINECS EC#	Concentration range in electrolyte (w/w%)	Mass range in cell (g/g%)	
	Electroly	te			
Lithium hexafluorophosphate	21324-40-3	244-334-7	10-20	1-5	
Lithium bis(trifluoromethanesulfonyl)imide	90076-65-6	415-300-0	1–5	0.1–1	
Electrolyte solvents					
Ethylene carbonate	96-49-1	202-510-0			
Propylene carbonate	108-32-7	203-572-1	80-90 10-2		
Diethyl carbonate	105-58-8	203-311-1			
Dimethyl carbonate	616-38-6	210-478-4			
Ethyl methyl carbonate	623-53-0	No listing			
1,3-Propanesultone	1120-71-4	214-317-9			

Section 4. First-aid measures

The IQ Battery 5P has a lithium-ion battery that contains organic electrolytes and is sealed in a protective case. The risk of exposure occurs only if the structural integrity of the enclosure of the battery is compromised through mechanical, thermal, or electrical abuses. If the battery is physically damaged, an electrolyte is leaked, and person(s) are exposed, the following initial care should be taken:

- 4.1 Description of first-aid measures
 - 4.1.1 General advice:
 - Move victims from a dangerous area to an area with fresh air.
 - Show this Safety Data Sheet to the medical professionals in attendance.
 - Quickly transport the victim to emergency care during eye contact, skin irritation, ingestion, or inhalation.
 - 4.1.2 Eye contact: Immediately flush the eyes with clean water for at least 15 minutes without rubbing. If appropriate procedures are not taken, this may cause eye irritation. Seek medical attention if eye irritation persists.
 - 4.1.3 Skin contact: Immediately remove all contaminated clothing and wash before reusing. Rinse your skin with water. If appropriate procedures are not taken, this may cause skin irritation. Seek medical attention if skin irritation occurs.
 - 4.1.4 Inhalation contact: Move victims to an area with fresh air immediately and remove the source of contamination from the affected area. Seek medical attention.
 - 4.1.5 Ingestion: Have the victim rinse their mouth thoroughly with water. Seek medical attention.
- 4.2 The most important symptoms and effects, acute and delayed.
 - See Section 2 for information on the most important known symptoms.
- 4.3 Indication of immediate medical attention and special treatment needed.
 - See point 4.1.1.
- 4.4 Self-protection of the first responder
 - Use personal protective equipment as described in <u>Section 8</u>.

Section 5. Fire-fighting measures

When lithium-ion batteries are damaged or abused (for example, mechanical damage or electrical overcharge), the flammable liquid electrolyte in them may vent, ignite, and produce sparks in the presence of high temperatures (>150°C). Burning batteries can ignite other batteries in proximity.

5.1 Extinguishing media

- ABC dry chemical fire extinguisher or regular foam.
- Additional extinguishing media include carbon dioxide, alcohol-resistant foams, or water spray.

5.2 Specific hazards

- Lithium-ion phosphate batteries contain flammable liquid electrolytes that may vent, ignite, and generate vapors.
- The interaction of water or water vapor with exposed lithium hexafluorophosphate may generate hydrogen and hydrogen fluoride (HF) gas.

5.3 Special protective actions for firefighters

- Wear respiratory protection.
- Use personal protective equipment as described in Section 8.

Section 6. Accidental release measures

6.1 Personal precautions, protective equipment, and emergency procedures

- Evacuate personnel to a safe area and keep unauthorized personnel away.
- Isolate the spill area to a minimum distance of 25 meters.
- Eliminate all ignition sources (no smoking, sparks, flames, or hot equipment) in the immediate area around the spill.
- Do not touch or walk through spilled material.
- Avoid breathing the vapor. Ensure adequate ventilation.
- Use personal protective equipment as described in <u>Section 8</u>.

6.2 Environmental precautions

• Absorb spilled material with a non-combustible, non-reactive absorbent to prevent it from migrating into soil, sewers, and natural waterways.

6.3 Methods and materials for containment and clean-up

- Contaminant removal and clean-up should only be completed by qualified personnel.
- Stop the leak only if it is safe to do so.
- Clean any residual electrolyte and liquid using a non-combustible, non-reactive absorbent. Ensure that clean-up procedures do not expose spilled material to moisture.
- Containerize and place all leaking batteries in individual containers that are leak-proof, non-conductive, non-combustible, and absorbent (for example, an LDPE plastic bag that is sealed shut and contains sufficient absorbent for the contained electrolyte).
 Ensure sufficient absorbent is used to absorb the total amount of liquid from the battery.
- Place used spill response materials in leak-proof, non-conductive, non-combustible containers containing absorbent and separate from batteries that have absorbent (for example, LDPE plastic bag that is sealed shut and contains sufficient absorbent for the contained electrolyte).
- Avoid the release of collected materials. Do not bring the collected materials near an open flame.

6.4 Reference for other sections

For disposal, see <u>Section 13</u>.

Section 7. Handling and storage

7.1 Precautions for safe handling

- Avoid mechanical damage to the IQ Battery 5P. Do not disassemble IQ Battery 5P.
- Avoid short-circuiting the battery.
- Never use a battery that has suffered abuse. Refer to the data sheet for safe operating instructions.

7.2 Conditions for safe storage

Store the IQ Battery 5Ps under the following conditions when not in use:

- Store indoors and on pallets or similar devices to enable any leaks to be visibly observed upon inspection and to ensure the items do not come into contact with water or salt breeze.
- Store in a dry location and away from heat sources such as furnaces, open flames, etc. Do not expose the battery to temperatures outside the range of -20°C to 50°C.
- Do not open, disassemble, crush, or burn the battery.
- It is recommended that the battery be kept at room temperature (25°C ±5°C) to minimize any adverse effects on performance. Elevated temperatures can result in shortened battery life.
- Store in an upright position and in areas that are not likely damaged or disturbed by personnel, equipment, or vehicles.
- Do not store unboxed items in areas with a source of spark generation within 30 cm, in direct sunlight, in direct exposure to exhaust gases, such as those from automobiles, or in places with continuous or intermittent vibration.

7.3 Specific uses

• The IQ Battery 5P is used as a fully integrated component of the Enphase Energy System.

Section 8. Exposure controls or personal protection

8.1 Control parameters

- 8.1.1 Airborne exposure to hazardous substances in the electrolyte is not expected when the cells or batteries are used for their intended purposes.
- 8.1.2 United States occupational exposure limits:
 - Lithium hexafluorophosphate (as fluoride)
 - o USA, OSHA PEL: 2.5 mg/m³ (TWA)
 - o USA, ACGIH TVL: 2.5 mg/m³ (TWA)
 - USA, ACGIH BEI: 2 mg/L (urine-before shift), 3 mg/L (urine-end of shift)
 - There are no published exposure limits for the remaining electrolyte components.
- 8.1.3 European Union and United Kingdom occupational exposure limits.

Country	Limit value – eight hours		Limit value – short term	
	ppm	mg/m³	ppm	mg/m³
	Lit	hium hexafluorop	hosphate (as fluori	de)
Austria	None	2.5	None	12.5 (30 minutes)
Belgium	None	2.5	None	None
Denmark	None	2.5	None	5
European Union	None	None	None	None
France	None	2.5	None	None
Germany	None	1.0	None	4 (15 minutes)
Hungary	None	2.5	None	10
Italy	None	None	None	None
Poland	None	2.0	None	None
Spain	None	2.5	None	None
Sweden	None	1.0	None	None
Switzerland	None	1.0	None	4 (15 minutes)
The Netherlands	None	None	None	2 (15 minutes)
United Kingdom	None	2.5	None	None

• There are no published occupational exposure limits for the remaining electrolyte components.

8.2 Exposure controls

8.2.1 Routine handling

• The IQ Battery 5P is a lithium-ion battery containing organic electrolytes sealed in a protective case. There is no risk of exposure during routine handling. The risk of exposure occurs only if the IQ Battery 5P is mechanically, thermally, or electrically abused to the point of compromising the enclosure.

• Do not eat, drink, or smoke in areas where IQ Batteries are stored or operated. Avoid storing food, drink, or tobacco near IQ Battery 5P. Practice and maintain good housekeeping.

 Jewelry items, such as rings, wristwatches, pendants, and others, can cause shortcircuiting when they come into contact with exposed battery terminals. Remove them when handling batteries.

8. 2. 2 Personal protective equipment

- The following personal protective equipment should be worn if the IQ Battery 5P is mechanically, thermally, or electrically abused to the point where the protective case is damaged, so there is a risk of electrolyte exposure.
 - Skin/Body protection: Wear closed-toe shoes, chemical-resistant overalls, and protective over boots.
 - Gloves: 15 mils nitrile rubber gloves. Immersion protection is provided when nitrile gloves are worn over laminated film barrier gloves (Ansell Barrier 2-100 or equivalent).
 - Eye/Face protection: Take steps to prevent exposure to the eyes and face, including chemical splash goggles and a face shield.
 - Respiratory protection: Wear a full-face respirator with an organic vapor/acid gas/particulate filter (3M Model No. 60923 or equivalent).

8. 2. 3 Engineering controls

- See Section 6 for accidental release response measures.
- See Section 7 for handling and storage measures.
- Ventilate the immediate area around a leaking cell or battery.

Section 9. Physical and chemical properties

Physical and chemical properties	IQ Battery 5P
Physical state	Solid
Color	No data available
Odor	Odorless
Melting point/Freezing point	No data available
Boiling point	No data available
Flammability	No data available
Lower/Upper explosion limit	Not applicable (solid)
Flash point	Not applicable (solid)
Evaporation rate	Not applicable (solid)
Auto-ignition temperature	Not applicable (solid)
Decomposition temperature	90°C
рН	Not applicable
Kinematic viscosity	Not applicable (solid)
Solubility	Insoluble
Partition coefficient n-octanol/water	Not applicable
Vapor pressure	No data available
Density	Not available
Relative vapor density	Not applicable (solid)
Particle characteristics	No data available
Explosive properties	No data available
Oxidizing properties	No data available

Section 10. Stability and reactivity

10.1 Reactivity

• No data is available.

10.2 Chemical stability

- IQ Battery 5P is stable under regular use and in normal storage conditions.
- No data is available.

10.3 Possibility of hazardous reactions

- Fire may occur if the battery is physically damaged or exposed to high-temperature conditions.
- Do not expose the battery to temperatures outside -40°C to 60°C.
- Do not disassemble, crush, short, or install with incorrect polarity. Avoid mechanical or electrical abuse or electrical shorts.

10.4 Conditions to avoid

• See Section 7.

10.5 Incompatible materials

• No data is available.

10.6 Hazardous decomposition products

Hydrofluoric acid and carbon monoxide may be released if a cell or battery is
physically damaged to the point where the case is compromised, and the electrolyte is
released.

Section 11. Toxicological information

11.1 Likely routes of exposure

The IQ Battery 5P has a lithium-ion cell containing organic electrolytes that are sealed in a protective case. The risk of exposure occurs only if the cell is mechanically, thermally, or electrically abused to the point of compromising the protective case. The following toxicological information only applies if an electrolyte leaks from the battery due to physical damage and an individual comes into contact with the electrolyte. No toxicological data regarding the electrolyte is available. The following information is provided for the electrolyte components:

11.2 Acute toxicity

Electrolyte:

- Oral: Lithium hexafluorophosphate is classified as acute toxic—oral (Category 3 (H301)). Ethylene carbonate and 1,3-Propanesultone are classified as acute toxic—oral (Category 4 (H302)). No oral toxicity data is available for the electrolyte. The electrolyte is presumed to be acutely toxic—oral per GHS mixture rules.
- o Inhalation: No data is available.
- Dermal/Eye: 1,3-Propanesultone is classified as acute toxic-dermal (Category 4 (H312)). The electrolyte is not acutely toxic-dermal per GHS mixture rules.

11.3 Skin corrosion/irritation

• Electrolyte: Individual electrolyte components cause skin corrosion/irritation and severe eye damage/irritation. Lithium hexafluorophosphate is classified as causing severe skin burns (Category 1 (H314)). Diethyl carbonate, ethyl methyl carbonate, and propylene carbonate are classified as causing skin irritation (Category 2 (H315)). No data is available for the electrolyte, and it is presumed to cause skin corrosion/irritation per GHS mixture rules.

11.4 Serious eye damage/irritation

• Electrolyte: Individual components of the electrolyte cause severe eye damage/irritation. Lithium hexafluorophosphate is classified as causing severe burn damage (Category 1 (H318)). Ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, propylene carbonate, and 1,3-Propanesultone are classified as causing severe eye irritation (Category 2 (H319)). No data is available for the electrolyte, and it is presumed to cause severe eye damage/irritation per GHS mixture rules.

11.5 Respiratory or skin sensitization

• Electrolyte: No data is available. No ingredients in the electrolyte are identified as causing respiratory or skin sensitization.

11.6 Germ cell mutagenicity

• Electrolyte: No data is available. No ingredients in the electrolyte are identified as causing germ cell mutagenicity.

11.7 Carcinogenicity

• Electrolyte: 1,3-Propanesultone is identified as a substance that may be carcinogenic (Category 1A/2B – H350). No data is available for the electrolyte.

11.8 Reproductive toxicity

- Electrolyte: No data is available. No ingredients in the electrolyte are identified as having reproductive toxicity.
- 11.9 Specific target organ toxicity single exposure
 - Electrolyte: Diethyl carbonate, ethyl methyl carbonate, and propylene carbonate are identified as causing lung irritation with a single exposure (Category 3 (H335)). No data is available for the electrolyte, and it is presumed to cause specific target organ toxicity damage (respiratory) with repeated exposure per GHS mixture rules.
- 11.10 Specific target organ toxicity repeated exposure
 - Electrolyte: Individual electrolyte components cause specific target organ toxicity damage with repeated exposure. Lithium hexafluorophosphate is identified as causing damage to bones and teeth (Category 1 (H372)). Ethylene carbonate is classified as causing kidney damage (Category 2 (H373)). No data is available for the electrolyte, and it is presumed to cause specific target organ toxicity damage with repeated exposure per GHS mixture rules.

11.11 Aspiration hazards

- Electrolyte: No data is available.
- 11.12 Symptoms related to physical, chemical, and toxicological characteristics.
 - Available information on the electrolyte's physical, chemical, and toxicological characteristics is presented for each hazard class (points 11.2–11.11).
- 11.13 Delayed and immediate effects and chronic effects from short- and long-term exposure.

For each hazard class, available information regarding the electrolyte's physical, chemical, and toxicological characteristics is presented (points 11.2–11.11).

Section 12. Ecological information

- 12.1 Toxicity
 - No data is available.
- 12.2 Persistence and degradability
 - No data is available.
- 12.3 Bio-accumulative potential
 - No data is available.
- 12.4 Mobility in soil
 - No data is available.
- 12.5 Results of PBT and VPvB assessments
 - Not applicable.
- 12.6 Other adverse effects

Solid battery cells released into the natural environment will slowly degrade and may release harmful or toxic substances. Cells are not intended to be released into water or on land and should be disposed of or recycled according to local regulations.

18

Section 13. Disposal considerations

13.1 United States/Canada:

- Recycling: Follow all applicable local, state, and federal recycling requirements.
- Disposal: Follow all applicable local, state, and federal disposal requirements.

13.2 European Union

• IQ Battery 5P must be disposed of per the EU Battery and WEEE Directives.

13.3 Australia and New Zealand

- Recycling: Follow all applicable local council, state, and national recycling requirements.
- Disposal: Follow all applicable local council, state, and national recycling requirements.

Section 14. Transport information

- 14.1 Proper shipping name: Lithium-ion batteries.
- 14.2 Hazard class: 9 Miscellaneous dangerous goods.
- 14.3 Identification number: UN3480
- 14.4 Packing group: II
- 14.5 Packing instructions: 965-IA (IATA Dangerous Goods Regulations, 59th Edition), International Maritime Dangerous Goods Code: See Packing Instructions P903, LP903, and Special Provision 188.
- 14.6 Not allowed on passenger aircraft.
- 14.7 Environmental hazards
 - Lithium-ion batteries are not classified as marine pollutants.
 - Follow all applicable local, state, and federal requirements when identifying additional environmental hazards.
- 14.8 Australian Dangerous Goods Code, Edition 7.5.

Section 15. Regulatory information

15.1 United States

- TSCA Status: All ingredients in these products are listed on the TSCA inventory.
- OSHA: The ingredients meet the criteria as per 29 CFR 1910.1200.
- EPCRA 302/304: None.
- EPCRA 311/312: Reportable more than 10,000 lb.
- EPCRA 313: None.
- CERCLA RQ: None.

15.2 European Union

- Regulation (EC) No. 1005/2009 on substances that deplete the ozone layer, Annex I: Not listed.
- Regulation (EC) No. 1005/2009 on substances that deplete the ozone layer, Annex II:
 Not listed.
- Regulation (EC) No. 850/2004 on persistent organic pollutants, Annex I as amended: Not listed.
- Regulation (EC) No. 689/2008 concerning the export and import of dangerous chemicals: Not listed.
- Other EU Regulations:
 - Directive 96/82/EC (Seveso II) on controlling major accident hazards involving dangerous substances: Not listed.
 - Directive 94/33/EC on protecting young people at work: Not listed.
 - This Safety Data Sheet complies with Regulation (EC) No. 1907/2006 requirements and was amended on May 28, 2015 by (EU) 2015/830.
 - Regulation (EC) No. 1272/2008: These products are not classified as hazardous.

15.3 Australia

Australian Dangerous Goods Code Edition 7.5: https://www.ntc.gov.au/codes-and-guidelines/australian-dangerous-goods-code.

15.4 Additional regulations are not provided elsewhere.

- 59th Edition of the IATA Dangerous Goods Regulations (DGR).
- 2015–2016 Edition of the CAO Technical Instructions for the Safe Transport of Dangerous Goods by Air.
- 2022 Edition of the International Maritime Dangerous Goods (IMDG) code.
- The battery has been tested per Sub-section 38.3 of the UN Manual of Tests and Criteria. The lithium-ion battery test summary is available upon request.

Safety Data Sheet

First issue date: February 24, 2023 Revision date: April 10, 2024

Section 16. Other information

NFPA 704 rating:

IQ Battery 5P referenced herein is an "article" according to the Globally Harmonized System (GHS) of Classification and Labelling of Chemicals under 29 CFR 1910.1200, the European Classification and Labelling Regulation (EC) No 1272/2008 (CLP), US OSHA 29 CFR 1910.1200 and the Safe Work Australia SDS Code of Practice and is therefore exempt from the Safety Data Sheet requirements. This document is provided only as a service to our customers and is not based upon any requirement or regulation.

Revision history

Revision	Date	Description
MKT-00543-5.0	April 2024	Updated table 1.1.1.
MKT-00543-4.0	November 2023	Added IQ Battery 10Z SKU and made editorial updates.
MKT-00543-3.0	September 2023	Added additional IQ Battery part numbers and updated sections 1.2.2, 8.1.3, and 9.
MKT-00543-2.0	June 2023	Editorial updates, Updated section 1.2.2.
MKT-00543-1.0	February 2023	Initial release.

^{© 2024} Enphase Energy. All rights reserved. Enphase, the e and CC logos, IQ, and certain other marks listed at https://enphase.com/trademark-usage-guidelines are trademarks of Enphase Energy, Inc. in the U.S. and other countries. Data subject to change.